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The Convergence of Multi-Level Methods 
for Solving Finite-Element Equations 

in the Presence of Singularities 

By Harry Yserentant 

Abstract. The known convergence proofs for multi-level methods assume the quasi-uniformity 
of the family of domain triangulations used. Such triangulations are not suitable for problems 
with singularities caused by re-entrant corners and abrupt changes in the boundary condi- 
tions. In this paper it is shown that families of properly refined grids yield the same 
convergence behavior of multi-level methods for such singular problems as quasi-uniform 
subdivisions do for H2-regular problems. 

1. The Continuous Problem, Its Discretization and the Multi-Level Method. Using 
multi-level techniques ([1], [3], [4], [6], [7], [8], [10]), it is possible to solve the large 
systems of linear equations arising in connection with finite-element methods with 
an amount of work roughly proportional to the number of unknowns. This property 
makes multi-level methods at least theoretically superior to all other solution 
methods, including fast solvers based on FFT-like algorithms which may be directly 
applied to special problems only. 

The convergence of multi-level methods was proved, for example, by Nicolaides 
[10], Bank and Dupont [4] and Hackbusch [8]. All these proofs assume a certain 
amount of elliptic regularity of the continuous problem to be solved approximately, 
and quasi-uniform subdivisions of the domain in finite elements. Assuming H1+a- 
regularity, such quasi-uniform triangulations and a Jacobi-like smoothing procedure, 
Bank and Dupont [4] and Hackbusch [8] showed the following result: The rate of 
convergence of a full iteration step of the multi-level method behaves like O(m 0/2), 

uniformly in the number of levels, for a growing number m of smoothing steps per 
level. In the optimal case a = 1, the problem has to be H2-regular. This means, for 
example, that the region is not allowed to have re-entrant corners. If this condition is 
violated, the convergence rate of the multi-level procedure decreases, and, in 
addition, the approximation properties of the finite-element discretization itself 
change for the worse because of the presence of singularities in the solution not 
captured by the quasi-uniform grids. The strongly nonuniform, systematically re- 
fined triangulations suitable for these problems are not included in the theory so far. 

The aim of the present paper is to fill this gap. 
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We take the boundary value problem 
-/u+u=f in2, 

(1.1) u = O on fD, 

au/an = 0 on FN, 

as a prototype of the problems under consideration. Q is an open bounded 
polygonal subset of 12, the boundary of which is subdivided in two parts, FD and 

FN, each consisting of finitely many pieces of straight lines. Let HD(Li) be the space 
of all functions u E H1(i2) with u = 0 on FD in the sense of traces. We understand 
the model problem (1.1) in the usual weak sense: Given a linear continuous 
functional 

(1.2) f*(v)= fvdx 

on HD(L2), we have to find a function u E HD(L2) with 

(1.3) B(u, X) { DiuDix + ux dx = f *(X) 

for all functions X E HD(Li). It is well known that this boundary value problem has 
a uniquely determined solution depending continuously on the functional f * from 
the dual space of HD(Li). We want to solve it approximately, using the finite-element 
method. 

By a triangulation Y of Q2 we mean a finite collection of closed triangles, the 
finite elements, the union of which is i2, such that the intersection of each two finite 
elements is either empty, or a common side, or a common vertex. In this paper we 
use a family Y0, 9Y1, Y2 ... of triangulations of i2 such that j+ I is a refinement of 

gj. That means that each triangle T Egj has to be a union of triangles of j+ 1. Let 
S(93?) be the space of functions continuous on i2 and linear on the finite elements 
T E- g, and let SD(g4) be the space of all functions from S(g) vanishing on the 
boundary piece FD from (1.1). The spaces SD(gjf) are subspaces of the solution 
space HD(Q) of the continuous problem (1.1), (1.3). Thus it is possible to find an 
approximation PJU E SD(Yjf) for the exact solution u E HD(Li) of (1.3) which 
satisfies the equation 

(1.4) B(Pju, X) = f *(X) 

for all functions X E SD(g4]). Because of the equation 

(1.5) B(Pju,X) = B(u,X), X E SD(g$) 

the approximation PJu is a projection of the function u E HD(L2) onto the subspace 
SD(C7) Of HD(Q2). Our aim is to solve the linear system (1.4). For this purpose, we 
use a multi-level method. 

To describe the multi-level iteration, we need a new inner product on the 
finite-element space S(4). Let XJ be the set of nodes of the triangulation Jj, that 
is, the vertices of the triangles of gj]. For functions u, v E S(57) we define the inner 
product Ej on S(9Y]) x S(gj) by 

(1.6) EJ(U v):= E U(X)v(X). 
T E- x Ef n T 
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This inner product induces the norm 

(1.7) I/lu //j:= ( E E u(x) 2) 
Tej x.A'fl TxI 

on S(S,). If nj(x) is the number of triangles of .Y containing the node xE AXJ, we 
have for u, v e S(.jY) 

(1.8) Ej(u, v) = E nj(x)u(x)v(x), 

(1.9) III/u = ( E nj(x)/u(x)I ) 

The bilinear forms Ej represent the smoothing procedure in the multi-level process. 
They can be replaced by similar positive definite and symmetric bilinear forms, 
which lead to norms equivalent to (1.9) in an appropriate sense. 

First, we define two-level methods. Given a linear function f * on HM(O2), our aim 
is to find a function Pju E SD(4j2) satisfying (1.4) for all X E SD(.j7). A single 
iteration step of the two-level method for solving this problem looks as follows: 

Let an approximation u0 E SD(9;) of Pju be given. First, a correction d E SD(Yj -1) 

from the coarser finite-element space SD(77_1) C SD(gY]), satisfying 

(1.10) B(d, X) = f *(X) - B(uo, X) 

for all X E SD(Q; -1), is computed. Then 

(1 .11) U1 = u0 + d 

is expected to be a better approximation of Pju. Now further approximations 

U2 ..., Um+1 E SD(.Yi) are computed, using the recursion 

(1.12) Ej(ul - u1,) = w{f*(X)-B(u11,X) } X E SD(gj )- 

m and, care fixed numbers; w is determined later. Then ur+ 1 is the result of the full 

iteration step with uo as starting value. 
The linear system (1.12) can be solved very fast and cheaply because of the simple 

structure (1.8) of the inner product Ej. If the usual nodal basis of S(gj7) is used, the 
matrix of the system (1.12) has diagonal form. Contrary to these smoothing steps, 
the computation of the correction term d as the direct solution of the linear system 
(1.10) is expensive. It is necessary to solve a problem analogous to (1.4) on the 
smaller space SD(gjY>1). Therefore, true multi-level methods continue the process 
until reaching the lowest level. They are defined recursively as follows: 

Forj = 0, the problem (1.4) is solved by a direct method. 
For j= 1, the problem (1.4) is solved by the described two-level procedure. 
For j > 2, the problem (1.4) is solved by a method analogous to the described 

two-level method, but the solution of the linear system (1.10) is replaced by the 
approximate solution obtained with p > 2 steps of the (j - 1)-level method. The 
starting value is do = 0. 

If the family of grids is refined in an appropriate way, the convergence of this 
process can be guaranteed also for problems with strong singularities. 
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As usual, our proof of convergence is based on an approximation property of the 
finite-element spaces and on a smoothing property. But contrary to the proofs cited 
above, we give these two properties a purely algebraic form, which makes it possible 
to treat nonuniform families of grids. 

The approximation property: There exists a constant K independent of j > 1 with 

(1.13) |||u - Pj-lu I|j < K||u - Pj-lu 

for all functions u e SD(C) 
The smoothing property: There is a constant K1 independent of j with 

(1.14) 11u | < K, III u ||| 

for all functions u e SD(4). 
The norm on the right-hand side of (1.13) and the left-hand side of (1.14) is the 

energy norm 
1/2 

(1.15) IUII =( El i (Dau)(x) I dx 

induced by the bilinear form B in (1.3). As we shall see in Section 2, the smoothing 
property is nearly trivial, whereas the approximation property has a hard analytic 
background. To prove it, one needs that the family of grids is properly adapted to 
the possible singularities in the solution of the continuous problem. At this point, we 
make use of the elliptic regularity theory. Intuitively, the approximation property 
says that the error between a function from a finite-element space of a given level 
and its projection onto the finite-element space of the next coarser level is fast 
oscillating in the sense of the local grid width. This is the reason why it can be 
damped out by a local relaxation like (1.12) and why multi-level methods are 
commonly believed to work so well. 

Using the approximation property (1.13) and the smoothing property (1.14), we 
prove in Section 3 that one step of the multi-level iteration reduces the energy norm 
of the error by a factor behaving like 0(1/ Vm) for a growing number m of 
smoothing steps per level, uniformly in the number of levels, if the parameter X in 
(1.12) is chosen correctly. This is qualitatively the same behavior as predicted by 
Bank and Dupont [4] for H2-regular problems and agrees with the observations 
made in numerical computations [5]. The error reduction factor with respect to the 
energy norm is expressed in terms of the constants from the approximation and the 
smoothing property. 

2. Proof of the Approximation and Smoothing Properties. We begin with the proof 
of the smoothing property (1.14), which is an easy task if we assume that the interior 
angles of the triangles in all triangulations are bounded away from zero by a positive 
constant. 

THEOREM 2.1. There is a constant K1 independent ofj with 

(2.1) afUctn < Ks u I lullj 

for all functions u E SD(4) 
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Proof. As the interior angles of the triangles T e g are bounded away from zero, 
there is a constant K1 depending only on this bound and on an upper bound for the 
diameters of the triangles such that 

(2.2) E J (Dau)(x)I2dx < K E Iu(x)12 
111T xe;'l T 

for all first-order polynomials u, hence for all functions u E S(F). A summation 
over all triangles T e g7 gives the desired result. O 

Note that the proof of Theorem 2.1 is constructive: The constant K1 can be taken 
as the square root of the largest eigenvalue of the local stiffness matrices for the 
single finite elements. This enables us to choose the parameter co in the definition of 
the two- and the multi-level method correctly; see Theorems 3.1 and 3.2 below. 

Conversely, the approximation property states that the norm induced by the inner 
product B majorizes the norm associated with EJ for functions u E SD(Cj) orthogo- 
nal to SD($j-1) with respect to B. To prove this, we have to make an essential 
assumption on how the triangulations are refined: Let the points xj,.. ., x" be the 
vertices of the domain Q, including the points of abrupt changes from Dirichlet to 
natural boundary conditions. For each vertex xi we define Ki = 1 if the two sides 
having the endpoint xi belong either both to 1D or both to FN, and Ki = 2 otherwise. 
Let 0 < 0i < 2 T be the interior angle of i2 at the point x,; because of possible 
changes in the boundary conditions, the case O, = g is permitted. Let ai = 

min{K1, K7T/01 }. Then I < ai < 1 holds. If we have pure Dirichlet or natural 
boundary conditions, ai < 1 only holds for re-entrant corners. We now choose 
coefficients yi with 1 - ai < yi < 1 if ai < 1, and set y1 = 0 if ac = 1. Define the 
function 4Y on 12 for y = (1, Y2,... , Y) by 

n 

(2.3) Py(X) = l lx - x1,1', 
i=l 

where {xi denotes the Euclidean length of the vector x. We assume that the family 
, 91, -2,. .... of triangulations has the following two properties: 
If T is a triangle from triangulation $7 and f0Y vanishes nowhere on T, the 

estimate 

(2.4) C12-4k_(x) < d(T) _< C22-kky(x) 

holds for all x E T, with positive constants C1 and C2 independent of T and $7. 
d(T) denotes the diameter of T and 0,, is given by (2.3). 

If T is a triangle from triangulation -l, and ?,(x) vanishes for a point x E T, the 
estimate 

(2.5) C12-max x(x) < d(T) < C22TJmax +,,(x) 

holds with the same constants C1 and C2 as in (2.4). 
Babuska, Kellogg, and Pitkaranta [2] have examined the approximation properties 

of finite-element spaces based on such triangulations. To describe their results, we 
have to define some additional norms: 

Let 

(2.6) =(f t2(X)IU(X) dx) 
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be a weighted L2-norm and W02; (Q2) be the space of all measurable functions on Q 
for which this norm is finite. Define f ,, as 

n 

(2.7) (A-.(X) = n x - xil-7 
and the norm 11110;-. on W02;- (Y(Q) analogously to (2.6), with O,, replaced by - ,,. 
Let W2'2; ((Q) be the space of all functions u E W1'2(Q2) with 

(2.8) 11u112;y= 11U + E 11Dau o.Y 
1a1= 2 

being finite. Using H6lder's inequality and H1(Q) c LP(Q7), 1 < p < ox, it can be 
shown that H1(Q) is continuously imbedded in W02;-'Y(Q). Therefore, the linear 
functional defined by (1.2) is a continuous linear functional on HD'i(Q), if the 
function f belongs to the weighted space W02; (Y(Q). For f E W02;y(E2), the boundary 
value problem (1.1), (1.3), therefore, has a uniquely determined solution u E H(Qi2) 
depending continuously on f. Its regularity properties are derived in [9]; see also [2]. 

THEOREM 2.2. If the coefficients y, are chosen as above, and f is taken from 

W0,2;,(q), the solution u of the boundary value problem (1.1), (1.3) belongs to 
W2,2; '7(Q), and there is a constant C independent off such that 

(2.9) IJUI12;y -<. Cllf llo;,Y. 

Babuska, Kellogg, and Pitkaranta [2] have shown: 

THEOREM 2.3. For allfunctions u E W22;y(E2), the estimate 

(2.10) |ju - PjUI1 < Chj11u112;, 

holds, with hj = 2- and a constant C independent of u andj. 

Of course, the constant in Theorem 2.3 depends on the properties of the family of 
triangulations and on the choice of y, but not on the regularity theory of the 
boundary value problem. 

Using a duality argument, one is now able to prove the approximation property of 
the finite-element spaces needed for our discussion of multi-level methods. This 
approximation property is an extension of the well-known L2-norm estimate of the 
error for convex domains: 

THEOREM 2.4 (see [2, THEOREM 5.2]). For allfunctions u E HD(i), the estimate 

(2.11) ||u - Pju 0; ,, < Chjj Pju - u 11 

holds, with hi = 2- and a constant C independent of u andj. 

From the result stated in Theorem 2.4 we can derive the approximation property 
(1.13): 

THEOREM 2.5. There exists a constant K independent ofj > 1 such that 

(2.12) |||u - Pj-luj < Kju - Pj-luuIIl 

for allfunctions u E SD(%9J). 
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Proof. Under the given assumptions on the family of triangulations there are 
constants C1 and C2 independent of j such that 

2 ~~~~~~~~~~~~~~2 
illu - Pj_lulll2 = E Ku - Pj_lu)(X) I 

T e_tj x e -Ii T 

< C1 F, d(T) |_ (u-P>iu)(x) dx 
TeX 

s C2 E h I f_ (x)|(u - P Iu)(x) Idx 
Tet?/ T 

= C2hju-211U 
2 

for all functions u E SD(Cj). Using Theorem 2.4 and hj-llhj= 2, we get the 
assertion. a 

3. A Convergence Proof for the Multi-Level Method. We begin with an analysis of 
the effect of the smoothing steps (1.12): 

LEMMA 3.1. If K1 is the constant of Theorem 2.1 and 0 < o < 1/K2, and if the 
approximations u are defined as in (1.10), (1.11), and (1.12), we have the estimate 

(3.1) IIPju -um+ 1 1 <j j-IIIPju 
- ul jjj. 

4w -2-m+1l 
Proof. We use a basis *1, ... ., JN of SD(47) with 

Ej(*i'Ik) 
= 

aik' B('i',k) = Xi3ik- 

If Pju - u1 is given by 
N 

Pju- = ci*i, 
i=l 

we get from (1.12) for / = 0,..., m, 
N 

Pju - = , (1 - X) ci* 
i=l 

and therefore 

2 1 
|Pu - U+|| = oEX;i(j 

_ 
CoXi)2MC2 

Because of Theorem 2.1 we have 0 < Xi < K2. Thus for 0 < co < 1/K2 the estimate 
0 < oXi < 1 holds. An elementary discussion of g(x) = x(1 - x)2m in the interval 
0 < x < 1 now gives 

jjPu -Um?1121 ? 1 - 1 ) 2m N 
1 Pi M+ w 2m + I ( 2m + I =1 

- 2m + 1 (I- 2m + 1 ) -|uPIu- j | 

For the optimal choice co = 1/KI, (3.1) reduces to 

(3.2) ||Pu - Um+lIIi < 
K 

| P -ul ll-j. 11 Pi 2m+1 
K 

2-m l II-P 
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By Theorem 2.1, K1 is bounded independently of j, and this justifies the name 
"smoothing property" for (1.14). 

With the help of Lemma 3.1 and Theorem 2.5, we are able to prove the 
convergence of the two-level procedure: 

THEOREM 3.1. If o is chosen such that the estimate 0 < <s 1/Kr2 is satisfied with 
the constant K1 from the smoothing property (1.14) and Theorem 2.1, respectively, 
and if the approximations ul of Pju are defined as in (1.10), (1.11), and (1.12), the 
estimate 

(3.3) IIPiu-um+lIJ 
K I 

2m+1 

holds. K is the constant from the approximation property and Theorem 2.4, respec- 
tively. Thus each step of the two-levelprocedure reduces the energy norm of the error by 
a factor behaving like 0(1/ xm) for a growing number m of smoothing steps, if the 
parameter o is chosen as above. 

Proof. By definition of u1, 

Pju - u = (Pju - uO) - Pj(Pju- uO) 

holds and, with the help of Theorem 2.5, we get 

111Piu 
- ull < KIIPju - lll < Kl Pju - ul 

This estimate and (3.1) lead to the desired result. El 
The optimal choice c = IIK 2 gives 

(3.4) P1ju - um+1 1 KK1 AIu - uolll. 

The convergence of the full multi-level process with nearly the same speed of 
convergence is a consequence of the preceding theorem: 

THEOREM 3.2. One step of the full multi-level procedure reduces the energy norm of 
the error by a factor behaving like 0(1/ Vm) for a growing number m of smoothing 
steps per level, uniformly in the number of levels, if the parameter o in the smoothing 
steps is chosen as in Theorem 3.1. 

Proof. The assertion is proved by induction over the number j of levels. Assume 
that one step of the j-level method reduces the energy norm of the error at least by 
the factor A>. 

In the multi-level iteration the correction term d E SD(, j--1) in (1.11) is replaced 
by an approximate correction d E SD(7-1). Let il = uo + d and u2, ... m+1 be 

defined analogously to (1.12), with u1 replaced by iiu. If u1 - ii has the represen- 
tation 

N 

U-U 1 = E ai, 
i=l 
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in the basis from the proof of Lemma 3.1, the final error is given by 
N 

Um+i - Um+i = E (1 - i)ma 

i=l 

Using 0 < coXi < 1, we therefore get 

11 Um+ - Um+iI 1Ii 11 ul- m = ||d-d 1. 
d is the approximate solution of (1.10) produced by p steps of the (j - 1)-level 
method, with do = 0 as starting value. As the exact solution d of (1.10) is given by 
d = Pj-(Pju - uo), we have 

11 d - 
Sjll I 11P lPj- I(Pju - uo) 11 

and therefore 

||Um+1 - Tm+1I||1 $< 3 si- ljPjU - uo .l- 

By Theorem 3.1, the estimate 

11 p m+1 4 2m 1 < 1 
w 1 ~Pju-uo 

holds. Together with the estimate proved before, we get 

IIPjU-Um i I{+ 1111 s ( + -1 1 |PjuIl 0|| 

which gives the final estimate 

~~ <~ + K 1 aj 1- 4 2m+1 

for A>. If we choose m such that 

K 1 1 

4 22m +1 4 

is satisfied, because of So = 0 and p > 2 the Si's are majorized by the smaller one of 
the two roots 8 of the equation 

a = 82 K 1 
33+4 22m+1 

This root can be estimated by 

K 1 
4 2m+1 

which completes the proof. El 
Under the assumptions (2.4) and (2.5) on the triangulations, we have the estimate 

(3.5) C14i < Nj < C24' 

for the number Nj of nodes of the triangulation 7j with positive constants C1 and 
C2 independent of j. Because of this estimate, the number of computer operations 
necessary to realize a single iteration step of the j-level procedure can be estimated 
in terms of the number of unknowns in the jth level: If F>j1 is the number of 
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operations necessary to realize one step of the (j - 1)-level method, we get analo- 
gously to [4] the estimate 

(3.6) Fj pFj_- + CmNj 

for the cost FJ of one step of the j-level method. The first term on the right-hand 
side of (3.6) represents the amount of work necessary for computing the correction 
term (1.10) by p steps of the (j - 1)-level method, and the second term, the work 
done in the m smoothing steps. Using (3.5) and (3.6), for p = 2 and p = 3, we get 
an estimate 

(3.7) LImNJ < Fj < L2mNJ 

with positive constants L1 and L2 independent of j and m. That means that the 
amount of work necessary to reduce the error of an initial approximation by a 
constant factor is proportional to the number of unknowns of the problem. 

For the exact solution u of the boundary value problem (1.1), (1.3) and its 
finite-element projection Pju on SD(497), we have by Theorems 2.2 and 2.3, 

(3.8) ||U - Pju jj1 < Chj|| u 112;-y < Chj|| f llo;y. 

Moreover, using the nested iteration process described in [4] and [8], it is therefore 
possible to get an approximation for P1u of order 0(hj) with an amount of work 
proportional to the number of unknowns in the jth level. 

Note Added in Proof. After the completion of this paper in 1983 many conver- 
gence proofs based on algebraic properties like our approximation and smoothing 
property have been given. As examples we mention the papers of Bank and Douglas 
[11] and the author [12]. In these papers it is proved that "symmetrized" multi-level 
methods converge for every number of smoothing steps per level, also in the case of 
the V-cycle. Using the results obtained in Section 2, one can apply these new theories 
to the situation considered here. 
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